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Reduction of the two-body problem with central interaction
on simply connected spaces of constant sectional curvature

A V Shchepetilov†
Department of Physics, Moscow State University, 119899 Moscow, Russia

Received 3 December 1997

Abstract. The problem of two particles with central interaction on simply connected spaces of
a constant curvature was considered. Due to the absence of the Galilei transformation in this case
the reduction to the dynamic problem in four-dimensional phase space was carried out using the
Marsden–Weinstein method. Canonically conjugate coordinates were found. The classification
of reduced dynamic systems was given. For some of them conditions of the existence global
solutions for dynamic equations with attractive potentials were found. The comparison of the
structure of obtained Hamiltonians with integrals of the one-particle problem with Bertrand’s
potentials was carried out.

1. Introduction

Among complete homogeneous Riemannian spaces along with the Euclidean spaceEn, only
hyperbolic spaceHn, the sphereSn and the projective spaceSn/(±I ), have the greatest
n(n + 1)/2-parametric group of global isometries [1]. Such spaces are homogeneous and
isotropic, i.e. they have no chosen points and directions, and they therefore have a constant
sectional curvature. They appear forn = 3 as space-like sections of a spacetime in some
general relativity models. This fact makes the study of various mechanical systems on these
spaces interesting.

In the 19th century J Bertrand set up and solved the problem of the determination of
all potentials in the Euclidean space, in which any finite motion of a particle was closed.
Therefore this problem and its generalizations carry his name. Its solutions are the Coulomb
and oscillator potentials. In [2] it was shown that among natural one-particle mechanical
systems with a central potential onSn, i.e. systems with a Lagrange function of the form:

L = m

2
gij ẋ

i ẋj − U(ρ(x, x0))

where gij is the metric tensor, andρ(x, x0) is the distance between pointsx and x0,
corresponding to this metric, there are two systems, with all finite trajectories closed.
Potentials of these systems are analogues of the Coulomb and the oscillator ones in the
spaceEn and pass into them when converging a radius of a curvature to infinity.

The Coulomb potential is the fundamental solution for the Laplace–Beltrami operator,
due to that it was known before [2], and the quantum-mechanical problem for it was
considered in [3, 4], and also later in [5]. These potentials for the spaceSn (as solutions
of the Bertrand problem) were rediscovered in [6, 7], and for the spaceHn they were
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found in [8]. In [2, 9] a discrete spectrum is obtained for corresponding quantum-
mechanical problems in the spaceSn by means of an algebra of operators, commuting with
a Hamiltonian, and being analogues of integrals of classical motions. In [10] quantum-
mechanical problems with the Coulomb potential onHn andSn were studied by a method
of functional integrals. In [8] Kepler laws were generalized as classical problems with the
Coulomb potential, in [11] a one-particle integrable classical problem on spacesHn and
Sn with a potential, being a sum of 2(n+ 1) oscillator potentials, was investigated.

In this paper a two-particle classical problem is studied on spacesHn andSn, which
in contrast to the Euclidean case, is not reduced to a one-particle problem, because of an
absence for these spaces of analogues of the Galilei transformation, permitting us in the
Euclidean case to pass to the coordinate system, connected with the centre of mass. In
fact by using a method of the group analysis of differential equations [12], it is possible
to show directly, that the group of point transformations, preserving the equation for the
geodesic on spacesH2 andS2, is generated only by isometries of these spaces, dilatations,
shifts and reflection of time. In other words it is possible to state the following. We shall
define by analogy with the Galilei spacetime [14], the spacetimeEM , as a trivial bundle
π : EM = M ×E1→ E1, with an axis of time as a base, naturally lift geodesics fromM
on EM and define the group of automorphisms Aut(EM), as a set of diffeomorphismsEM on
itself, passing a lay in a lay, geodesic in geodesic and inducing an isometry in the baseE1.
In the caseM = E2 dimAut(EM) = 6, and in a caseM =H2 or S2 dimAut(EM) = 4. The
matter is similar in spacesHn andSn. Thus we can see, that already a two-particle problem
on simply connected spaces of constant sectional curvatures can be difficult to solve, while
for the Euclidean space difficulties arise from the three-particle case. We shall note that
for spacesHn andSn, n > 3 the two-particle problem reaches the maximal generality at
n = 3, i.e. two elements from the spaceT ∗Hn (from the spaceT ∗Sn) are always contained
in some subspaceT ∗H3 ⊂ T ∗Hn (in a subspaceT ∗S3 ⊂ T ∗Sn). Therefore two mass
points with central interaction will always stay in the spaceH3 (S3). We therefore consider
n 6 3.

We shall consider a system of two particles, interacting by a central potential. We shall
denote by digit 1 a particle with a massm1, and by digit 2 a particle with a massm2. For
separating the motion of a system as a whole we shall use the Marsden–Weinstein method
of a reduction of Hamiltonian systems with symmetries [15]. As an alternative to the Galilei
transformation while separating the motion of the centre of mass this method was applied
to the Euclidean space in [17]. The Abelian subgroup of a complete isometry group ofEn,
consisting of translations and being isomorphicRn was used there as a group of symmetries.
Further reasonings, using the complete group of isometries, in a limit of a zero curvature,
give for the spaceEn another way of transforming of a two-particle problem to a one-
particle problem. In [16] it was shown that at the reduction of Hamilton dynamic systems
on the cotangent bundle of the configuration space by means of some symplectomorphic
group, the obtained dynamic system can be identified with the dynamic system on some
subbundle of the cotangent bundle of some subspace of the initial configuration space. The
basic difficulty at the analysis of a concrete problem is the choice of convenient canonically
conjugate coordinates and their interpretation.

2. Basic notations

In order to reduce the consequent calculations we chose models of the spacesH3 andS3

so that by formal replacements it would be possible to transform statements, valid for the
one space, into statements valid for the other. Let the sphereS3 be realized asR3 ∪ {∞}
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with the metric:

ds2 = 4R2(dx2+ dy2+ dz2)

(1+ x2+ y2+ z2)
2 (1)

whereR is the radius of a curvature. In the given model Euclidean angles coincide with
non-Euclidean ones. The distance between two points we shall denote asρs(· , ·).

The component of the unit of the isometry group is the group SO(4), with Lie algebra
so(4) = so(3)⊕ so(3). The resulting Killing vector fields correspond to basis elements of
this algebra:

Xs
1 = y

∂

∂z
− z ∂

∂y
Y s1 =

1

2
(1+ x2− y2− z2)

∂

∂x
+ xy ∂

∂y
+ xz ∂

∂z

Xs2 = z
∂

∂x
− x ∂

∂z
Y s2 =

1

2
(1+ y2− x2− z2)

∂

∂y
+ xy ∂

∂x
+ yz ∂

∂z

Xs3 = x
∂

∂y
− y ∂

∂x
Y s3 =

1

2
(1+ z2− x2− y2)

∂

∂z
+ xz ∂

∂x
+ yz ∂

∂y
.

Commutative relations of these fields have the form:

[Xsi , X
s
j ] = −

3∑
k=1

εijkX
s
k [Y si , Y

s
j ] = −

3∑
k=1

εijkX
s
k [Xsi , Y

s
j ] = −

3∑
k=1

εijkY
s
k

where εijk is a completely antisymmetric tensor,εijk = 1. If we denoteLi = 1
2(X

s
i +

Y si ),Gi = 1
2(X

s
i − Y si ), i = 1, 2, 3, we shall receive the commutative relations

[Lsi , L
s
j ] = −

3∑
k=1

εijkL
s
k [Gs

i ,G
s
j ] = −

3∑
k=1

εijkG
s
k [Lsi ,G

s
j ] = 0

i, j = 1, 2, 3, which correspond to the expansion so(4) = so(3)⊕ so(3).
For the spaceH3 we take the Poincaré model in the unit ballD3 ⊂ R3 with the metric:

ds2 = 4R2(dx2+ dy2+ z2)

(1− x2− y2− z2)
2 x2+ y2+ z2 < 1.

The component of the unit of the isometry group is the group SO(1, 3), with the simple
algebra so(1, 3). Again Euclidean angles coincide with the non-Euclidean ones. The
distance between the two points we shall denote asρh(·, ·).

Corresponding Killing vector fields have the form:

Xh1 = y
∂

∂z
− z ∂

∂y
Y h1 =

1

2
(1− x2+ y2+ z2)

∂

∂x
− xy ∂

∂y
− xz ∂

∂z

Xh2 = z
∂

∂x
− x ∂

∂z
Y h2 =

1

2
(1− y2+ x2+ z2)

∂

∂y
− xy ∂

∂x
− yz ∂

∂z

Xh3 = x
∂

∂y
− y ∂

∂x
Y h3 =

1

2
(1− z2+ x2+ y2)

∂

∂z
− xz ∂

∂x
− yz ∂

∂y
.

Commutative relations of these fields have the form:

[Xhi ,X
h
j ] = −

3∑
k=1

εijkX
h
k [Yhi , Y

h
j ] =

3∑
k=1

εijkX
h
k [Xhi , Y

h
j ] = −

3∑
k=1

εijkY
h
k .

In appendix A invariantsF s,h1 andF s,h2 are given for coadjoint actions of isometry groups
of spacesH3 andS3. Also a classification of the corresponding orbits is given.



6282 A V Shchepetilov

3. Reduction of the dynamic system on the spaceS3

We shall now consider the phase space

M = T∗(S3⊕ S3 \ diag)

with the diagonal in the configuration space excluded to avoid difficulties with the collisions
of two particles. This space possesses the standard symplectic structure:ω = dp∧dq, where
q are coordinates onS3, andp are corresponding impulses. The action of the isometry
group on the configuration space naturally rises up to the action on the cotangent bundle,
and it is identical for each of the two terms.

The momentum map

8 : M → so∗(4)

is given by the formulae:

2∑
i=1

(yipzi − zipyi ) = φ1

2∑
i=1

(zipxi − xipzi ) = φ2

2∑
i=1

(xipyi − yipxi ) = φ3

2∑
i=1

( 1
2(1+ x2

i − y2
i − z2

i )pxi + xiyipyi + xizipzi ) = φ4

2∑
i=1

( 1
2(1+ y2

i − x2
i − z2

i )pyi + xiyipxi + yizipzi ) = φ5

2∑
i=1

( 1
2(1+ z2

i − x2
i − y2

i )pzi + xizipxi + yizipyi ) = φ6.

The rank of the map8 is investigated in appendix B. It is shown there, that those and
only those values of8 are regular, for whichF s1 6= F s2 . Values of8, for which F s1 = F s2
are irregular and correspond to the motion of particles onS2 ⊂ S3. The rank of the map
8 is less than 6 on those points of spaceM, which correspond to the motion of particles
on a common geodesic.

Since the action of the symmetry group SO(4) onM corresponds to its coadjoint action
on so∗(4) (thus the momentum map is intertwining one for two representations), it is possible
to choose on each orbit of this group some point so that calculations will be simplified.

We shall consider a value of the momentum map, laying on an orbit of type I (see
appendix A). Letφ1 = α, φ4 = β, φ2 = φ3 = φ5 = φ6 = 0. Without losing generality it is
possible to considerα, β > 0, by replacing, if it is necessary, the signs of some coordinates.
Initially we shall consider the caseα, β > 0, α 6= β. The given value of the momentum map
is regular and the setMα,β := 8−1(α, 0, 0, β,0, 0) is a smooth manifold. The stationary
subgroup isGst = S1⊕S1, generated by vector fieldsXs1 andY s1 and acts freely onMα,β .
Corresponding to the common scheme, the phase space of the reduced mechanical system
will be the four-dimensional quotient spacêMα,β = Gst \Mα,β . Let π : Mα,β → M̂α,β be
the natural projection,X, Y the vector fields onM̂α,β ,

ω̂(X, Y ) = ω|Mα,β
(π−1(X), π−1(Y ))

—the symplectic structure on̂Mα,β . The last definition is correct, since it does not depend
on a choice of elements from setsπ−1(X) andπ−1(Y ) [15]. Next we shall derive convenient
coordinates on the reduced phase spaceM̂α,β .
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Each orbit of the groupGst onS3 contains only one point of the formx = z = 0, y > 0,
therefore it is possible to identify the spacêMα,β with a submanifoldMα,β , given by
equations

2∑
i=1

(yipzi − zipyi ) = α (2)

2∑
i=1

(zipxi − xipzi ) = 0 (3)

2∑
i=1

(xipyi − yipxi ) = 0 (4)

2∑
i=1

( 1
2(1+ x2

i − y2
i − z2

i )pxi + xiyipyi + xizipzi ) = β (5)

2∑
i=1

( 1
2(1+ y2

i − x2
i − z2

i )pyi + xiyipxi + yizipzi ) = 0 (6)

2∑
i=1

( 1
2(1+ z2

i − x2
i − y2

i )pzi + xizipxi + yizipyi ) = 0 (7)

and the condition, that the pointC, located on the geodesic0, connecting points 1 and 2,
so, thatρs(2, C) = µρs(2, 1), whereµ is some number, has coordinates(0, y,0), y > 0,
see figure 1.

Geodesics0 and (0C) are located in some Euclidean planêE2, which together with
the point at infinity is a sphereS2, with respect to the metric (1). Let(0t) be a Euclidean
line, perpendicular to the line(0y), located inÊ2 and being geodesic inS3. Let φ andψ
be angles between geodesics, as shown in figure 1. Thus

r1 = tan(ρs(1, C)/2R) = tan((1− µ) arctanr) (8)

r2 = tan(ρs(2, C)/2R) = tan(µ arctanr) (9)

r = tan(ρs(1, 2)/2R). (10)

Figure 1. Parametrization of the two-particle system on the spaceS3.



6284 A V Shchepetilov

Using standard formulae of the spherical geometry, it is possible to obtain the following
relations:

t1 = − r1(1+ y2) sinφ

1+ r2
1y

2− 2yr1 cosφ
t2 = r2(1+ y2) sinφ

1+ r2
2y

2+ 2yr2 cosφ

y1 = y(1− r2
1)− r1(y2− 1) cosφ

1+ r2
1y

2− 2yr1 cosφ
(11)

y2 = y(1− r2
2)+ r2(y2− 1) cosφ

1+ r2
2y

2+ 2yr2 cosφ
. (12)

Besides, it is obvious, that

x1 = t1 cosψ x2 = t2 cosψ (13)

z1 = −t1 sinψ z2 = −t2 sinψ. (14)

We shall substitute valuesx1, x2, y1, y2, z1, z2, expressed viar1, r2, y, φ, ψ , in equations (2)–
(7) and consider them as a system of linear equations with respect to impulses with a matrix
P . Since further evaluations are very cumbersome, they were done using the system of
computer analytical transformations Maple V. We shall describe the results obtained. The
matrix P has a rank of 5 and the condition of solvability of the system (2)–(7) looks like:

tanψ = α(1− y2)

2βy
. (15)

If this condition is satisfied the solution of the system (2)–(7) looks like:

p = p(0) + uv (16)

wherep(0) is a particular solution of the system (2)–(7),u ∈ kerP,u 6= 0, v ∈ R1. It
is possible to choosep(0) and u, such that, in view of relations (15) and (8)–(10), the
symplectic structure on the spacêMα,β (ω = dp ∧ q, wherep is given by formula (16),
andq by formulas (11)–(14)) looks like:

ω = dν ∧ dr + d

(
αβ√

α2 cos2ψ + β2 sin2ψ

)
∧ dφ.

Introducing a notationpr = ν, pφ = αβ/
√
α2 cos2ψ + β2 sin2ψ we obtain, with

the help of Maple V, for the kinetic energy of the system, equal to

Ts =
2∑
i=1

(1+ x2
i + y2

i + z2
i )

2(p2
xi
+ p2

yi
+ p2

zi
)

8miR2

an expression, depending onµ.
There are two basic different possibilities of the choice of the valueµ. The first consists

of fixing the centre of mass of the system on the geodesic(0y) by means of the groupGst

action. In this caseµ = m1/(m1 + m2). The second possibility consists of fixing on the
geodesic(0y) the positions of one of particles, for example, particle 2. Hereµ = 0. In the
first case the expression for the kinetic energy takes the form:

Ts = (1+ r2)2p2
r

8mR2
+ 1

2R2
A(r)p2

φ +
α2+ β2

2(m1+m2)R2
+ α2β2

2R2p2
φ

C(r)

+
√
(α2− p2

φ)(p
2
φ − β2)

4R2
B(r) cosφ + (α

2− p2
φ)(p

2
φ − β2)

2R2p2
φ

C(r) cos2 φ (17)
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where

A(r) = (1+ r2)2

8mr2
− 1

m1+m2
+ 1− r4

8mr2
cosζ + 1+ r2

4m1m2r
(m1−m2) sinζ

B(r) = (m2−m1)

m1m2r
(1+ r2) cosζ + 1− r4

2mr2
sinζ

C(r) = (1+ r2)2

8mr2
− 1

m1+m2
− 1− r4

8mr2
cosζ − 1+ r2

4m1m2r
(m1−m2) sinζ

ζ = 2
m1−m2

m1+m2
arctanr m = m1m2

m1+m2

min{α, β} 6 pφ = αβ/
√
α2 cos2ψ + β2 sin2ψ 6 max{α, β}.

At µ = 0 the expression for the kinetic energy looks like:

Ts = (1+ r2)2

8mR2

(
p2
r +

p2
φ

r2

)
− p2

φ

m2R2
+ α

2+ β2

2m2R2

−
√
(α2− p2

φ)(p
2
φ − β2)

2R2m2

(
1+ r2

pφ
pr sinφ + 1− r2

r
cosφ

)
. (18)

Expression (17) is symmetric with respect to the permutation of particles, but
expression (18) is simpler.

We shall now consider the caseα = β 6= 0. This is the regular value of the momentum
map with the stationary subgroupS1⊕SO(3) generated by vector fieldsH1,G1,G2,G3. In
this case the obtaining canonical coordinates and the expression the kinetic energy via them
can be carried out according to the same scheme with significant simplifications, however,
the same result is obtained by passing to the limit in formula (17) or formula (18). The
kinetic energy in this case looks like:

T (1)s =
(1+ r2)2

8mR2

(
p2
r +

α2

r2

)
corresponding to the motion of one particle with a massm in a central field with constant
impulsepφ = α.

The caseα = 0, β 6= 0 orα 6= 0, β = 0, as above-mentioned, corresponds to the motion
of particles onS2 ⊂ S3, and this value of the momentum map is irregular. However,
(see appendix B), the momentum map for two particles on the sphereS2 is regular at all
nonzero values and the corresponding stationary subgroup isS1. It is again possible to
obtain canonical coordinates and to express the kinetic energy via them using the same
scheme with significant simplifications, however the same result can be obtained by passing
to the corresponding limit in formulae (17) and (18).

The case of the zero value of the momentum map corresponds to one-dimensional
motion and is thus uninteresting.

4. Reduction of the dynamic system on the spaceH3

Since the formal change of variablesx → ix, y → iy, z→ iz, r → ir, R→ iR, Xsk → Xhk ,
Y sk → Yhk , k = 1, 2, 3, p→−ip, φk → φk, k = 1, 2, 3, φk →−iφk, k = 4, 5, 6 transforms
formulae, valid forS3, into formulae, valid forH3, we can easily obtain results forH3

from the results forS3.
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If the value of the momentum map lays on an orbit of coadjoint action of the group
SO(1,3) of the type I (see appendix A), the expression for the kinetic energy for the centre
of mass fixed on the axis(0y) by the action of the stationary subgroup is obtained from
(17) by the above-mentioned change of variables and looks like:

Th = (1− r2)2p2
r

8mR2
+ 1

2R2
A(r)p2

φ +
β2− α2

2(m1+m2)R2
− α2β2

2R2p2
φ

C(r)

+
√
(p2

φ − α2)(p2
φ + β2)

4R2
B(r) cosφ + (α

2− p2
φ)(p

2
φ + β2)

2R2p2
φ

C(r) cos2 φ (19)

where

A(r) = (1− r2)2

8mr2
+ 1

m1+m2
+ 1− r4

8mr2
coshζ − 1− r2

4m1m2r
(m1−m2) sinhζ

B(r) = (m2−m1)

m1m2r
(1− r2) coshζ + 1− r4

2mr2
sinhζ

C(r) = (1− r2)2

8mr2
+ 1

m1+m2
− 1− r4

8mr2
coshζ + 1− r2

4m1m2r
(m1−m2) sinhζ

ζ = 2
m1−m2

m1+m2
arctanhr

α 6 pφ = αβ/
√
β2 sin2ψ − α2 cos2ψ <∞.

At µ = 0 the expression for the kinetic energy looks like:

Th = (1− r2)2

8mR2

(
p2
r +

p2
φ

r2

)
+ p2

φ

R2m2
+ β

2− α2

2m2R2

−
√
(p2

φ − α2)(p2
φ + β2)

2R2m2

(
1− r2

pφ
pr sinφ + 1+ r2

r
cosφ

)
. (20)

In the case of belonging of the value of the momentum map to orbits of the coadjoint
action of the group SO(1,3), corresponding to the two-dimensional motion of two particles
on the spaceH2 ⊂H3, an expression for kinetic energies can be, as well as for the sphere
S3, obtained by limiting invariants of the coadjoint action (orα andβ) to corresponding
values. Each case of the two-dimensional motion can be called, according to the type
of one-dimensional stationary subgroup of the group SO(1,2) (see appendix A), elliptic,
hyperbolic and parabolic. Expressions for kinetic energies in these cases are obtained by
assuming in the formulae (19) and (20) thatβ = 0 (elliptic case),α = 0 (hyperbolic case),
α = 0, β = 0 (parabolic case).

Remark. From the limiting procedure it is not initially clear what the possible values of
the impulsepφ are. Detailed calculations for the sphereS2 and the spaceH2, which are
technically much easier than for the sphereS3 and the spaceH3, show, that for the sphere
S2 there is fulfilled inequality|pφ| 6 |α| (atβ = 0), and for the spaceH2 there are fulfilled
inequalities as follows. For the elliptic case,|pφ| > |α|, for the parabolic case,|pφ| > 0.
For the hyperbolic case the impulsepφ can be of any value.
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5. Discussion

Reduced Hamiltonians of particles, interacting by a central potential, are obtained from
expressions for kinetic energies (17)–(20) by adding a potentialV (r). Hamiltonians
corresponding to expressions (18) and (20) after discarding constant terms have the form:

Hs = H 0
s −

p2
φ

m2R2
−
√
(α2− p2

φ)(p
2
φ − β2)

2R2m2

(
1+ r2

pφ
pr sinφ + 1− r2

r
cosφ

)
(21)

where

H 0
s =

(1+ r2)2

8mR2

(
p2
r +

p2
φ

r2

)
+ V (r)

and

Hh = H 0
h +

p2
φ

R2m2
−
√
(p2

φ − α2)(p2
φ + β2)

2R2m2

(
1− r2

pφ
pr sinφ + 1+ r2

r
cosφ

)
(22)

where

H 0
h =

(1− r2)2

8mR2
(p2

r +
p2
φ

r2
)+ V (r).

Their structure can be described as follows. The first term corresponds to a motion of a
particle with a massm on S3 or H3 in the potentialV (r). The second term is an integral
for the HamiltonianH 0

s,h. Thus, if we omit in Hamiltonians considered the third terms, we
shall obtain Hamiltonians, corresponding to integrable systems. Of course, whenV (r) ≡ 0
HamiltoniansHs,h are also integrable, because they correspond to an independent geodesic
motion of two particles. The additional integral in this case is the sum of the second and
the third terms.

The closure of all limited orbits in the Coulomb or the oscillator potential for one-particle
problems on two-dimensional surfaces of a constant curvature leads to the existence of an
additional third integral with respect to the energy and the angular momentum. For the
HamiltonianH 0

h with the Coulomb potential:V qh (r) = −k(1+ r2)/(2Rr) it is possible to
use any of the following expressions as such integrals:

I
(1)
h = ((1+ r2)p2

φ/(2Rr)− km) cosφ + (1− r2)prpφ sinφ/(2R)

I
(2)
h = ((1+ r2)p2

φ/(2Rr)− km) sinφ − (1− r2)prpφ cosφ/(2R)

and for the HamiltonianH 0
s with the potential: V qs (r) = −k(1 − r2)/(2Rr) from the

following [2]:

I (1)s = ((1− r2)p2
φ/(2Rr)− km) cosφ + (1+ r2)prpφ sinφ/(2R)

I (2)s = ((1− r2)p2
φ/(2Rr)− km) sinφ − (1+ r2)prpφ cosφ/(2R).

These integrals are the analogues of the components of the Laplace vector for the Euclidean
case. We note that the last terms in (21) and (22) are similar to the expressionI (1), this
likeness is particularly noticeable for the Hamiltonian (22) atα = β = 0, which corresponds
to the parabolic case. It can be rewritten as:

H
p

h = K −
km

m2R
cosφ
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where the Hamiltonian

K = H 0
h +

p2
φ

m2R2
− I

(1)
h

m2R

corresponds to an integrable system with the additional integralH 0
h or p2

φ/(m2R
2) −

I
(1)
h /(m2R).

At a small value of the parameterm/m2 = m1/(m1+m2), which corresponds to the case
of motion of a light body around a heavy one, Hamiltonians (21) and (22) can be considered
as perturbations of integrable one-particle problems. For a potentialV (r) of a general form
(under the condition of nondegeneracy or the condition of isoenergetic nondegeneracy of a
Hamiltonian), the KAM theorem [13] suggests that the majority of invariant tori in a phase
space at a sufficiently small parameterm/m2 are only slightly deformed, and action variables
(constructed for nonperturbed problems) will always remain near their initial values. In other
words, for finite orbits the time of motion between pericentre and apocentre, and also the
distance from these points to the pointr = 0 will always remain near their initial values.

However, for the Coulomb and the oscillatory potentials the condition of the
nondegeneracy is not fulfilled and the KAM theorem cannot be applied.

A proof of the impossibility of the collision of particles is of some interest. It is clear,
that for repulsion potentials with a singularity in the pointr = 0 collisions do not happen.

Theorem.If the potentialV (r) is smooth atr > 0 and has atr → 0 a singularity o(r−2),
collisions of particles for the finite time will not happen in the following cases.

(1) For the spaceS3 at F s1 6= 0, F s2 6= 0; and
(2) for the spaceH3 at Fh1 6= 0, F h2 6= 0 and also in elliptic and parabolic cases of

motion on the spaceH2 ⊂ H3. If these conditions are fulfilled, then the dynamic system
of two particles on the sphereS3 has a global solution. If, in addition, the potentialV (r)
is bounded below, atr → 1, this is also valid for the spaceH3. Particularly, conditions of
the theorem are satisfied by potentials, being solutions of the Bertrand problem.

Proof. Let a potentialV (r) be smooth atr > 0 and V (r) = o(r−2) at R → 0. In
formulae (17) and (19) functionsA,B,C have the following asymptotics atr → 0:

A(r) = 1

4mr2
+O(1) B(r) = O(r) C(r) = O(r2). (23)

Therefore in the HamiltonianHs := Ts + V (r), whereTs is given by formula (17) there
can be singular, atr → 0 only the terms(1+ r2)2p2

r /(8mR
2), A(r)p2

φ/(2R
2), V (r), since

|pφ| > min{|α|, |β|} > 0. However, it is clear, that their sum→ ∞ at r → 0, that
contradicts the energy preservation law:H = constant.

It is also valid for the Hamiltonian, corresponding to the kinetic energy (19) atα 6= 0.
It is only necessary to carry out the proof of the collisions impossibility in the parabolic
case, i.e. for the Hamiltonian

Hh = (1− r2)2

8mR2
p2
r +

(
A(r)+ 1

2
B(r) cos(φ)− C(r) cos2(φ)

)
p2
φ

2R2
. (24)

We shall carry out this proof byreductio ad absurdum, assuming, that at timeτ the
valuer = 0. Then from formulae (23) and (24) and the energy preservation law, it follows
thatpφ(τ) = 0. However, the valuepφ satisfies the following differential equation

dpφ
dt
= −∂Hh

∂φ
= p2

φ

2

(
1

2
B(r) sin(φ)− C(r) sin 2φ

)
.
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One can see atτ1 < τ and sufficiently small valueτ − τ1 that:

|pφ(τ1)| =
∣∣∣∣ ∫ τ1

τ

dpφ
dt

dt

∣∣∣∣ 6 constant
∫ τ1

τ

|pφ|dt.

From Gronwall’s inequality we obtain:

|pφ(τ1)| 6 |pφ(τ)| exp(constant|τ − τ1|) = 0.

However, the conditionpφ ≡ 0 contradicts the remark from section 4.
The drift of a particle (particles) at finite time to infinity can also prevent the existence

of a global solution of corresponding dynamic systems on the spaceH3. If the potential is
bounded from below atr → 1 forH3, it does not happen because of the energy preservation
low. �

Appendix A

The orbits classification of the coadjoint action of isometry groups of spacesS3 andH3.
Since SO(4) ' (SU(2) ⊕ SU(2))/{±(1⊕ 1)}, and SO(3) ' SU(2)/{±1}, the orbit of

the coadjoint action of the group SO(4) is a direct product of two orbits of the coadjoint
action of the group SO(3). The latter orbits are concentric spheresS2 ⊂ R3, or 0 ∈ R3.
We shall denote the basis in so∗(4), dual to the basisXsi , Y

s
i , i = 1, 2, 3 by Xis, Y

i
s , so,

that an arbitrary element from so∗(4) looks like
∑3

i=1(φiX
i
s + φi+3Y

i
s ). Then an orbit of

the coadjoint action of the group SO(4) is given by equations

F s1 :=
3∑
i=1

(φi + φi+3)
2 = c1

F s2 :=
3∑
i=1

(φi − φi+3)
2 = c2 ci > 0 i = 1, 2.

Each orbit contains a point of the formφ1 = α, φ4 = β, φ2 = φ3 = φ5 = φ6 = 0. At
α 6= ±β inequalitiesc1 6= 0, c2 6= 0 are fulfilled, the orbits are isomorphic to the space
S2 ⊕ S2, the stationary subgroup isS1 ⊕ S1 and generated by vectorsXs1, Y

s
1 . We shall

label such orbits as orbits of type I. Atα = ±β 6= 0 eitherc1 = 0, or c2 = 0, orbits are
isomorphic to the spaceS2, the stationary subgroup isS1 ⊕ SO(3). We shall label such
orbits as orbits of type II. Atα = β = 0 the orbit consists only of the point 0, and the
stationary subgroup is SO(4).

We shall denote the basis in so∗(1, 3), dual to the basisXhi , Y
h
i , i = 1, 2, 3 by Xih, Y

i
h,

such that an arbitrary element from so∗(1, 3) looks like
∑3

i=1(φiX
i
h + φi+3Y

i
h). Then an

orbit of the coadjoint action of the group SO(1, 3) is given by equations

Fh1 :=
3∑
i=1

(φ2
i − φ2

i+3) = c1

Fh2 :=
3∑
i=1

(φ2
i φ

2
i+3)− 2φ1φ4φ2φ5− 2φ1φ4φ3φ6− 2φ2φ5φ3φ6 = c2.

These orbits can be classified as follows. Orbits, for whichc2 6= 0, contain a point of the
form φ1 = α 6= 0, φ4 = β 6= 0, φ2 = φ3 = φ5 = φ6 = 0. The corresponding stationary
subgroup is generated by vectorsXh1, Y

h
1 and is equal toS1 ⊕R1. We shall refer to such

orbits as type I. The type II orbits consist of orbits, for whichc2 = 0, c1 > 0. Such orbits
contain a point of the formφ1 = α 6= 0, φ2 = φ3 = φ4 = φ5 = φ6 = 0. The vector
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Xh1 generates one-parameter group of transformations, preserving the stratificationH3 on
stratums, isomorphicH2, and in each stratum this transformation is elliptic [18]. We shall
call, therefore, the given type of orbits elliptic. The corresponding subgroup is generated by
vectorsXh1, Y

h
1 . The type III orbits consist of orbits, for which inequalitiesc2 = 0, c1 < 0 are

fulfilled. Such orbits contain a point of the formφ4 = β 6= 0, φ1 = φ2 = φ3 = φ5 = φ6 = 0.
The vectorYh1 corresponds to hyperbolic transformations of the spaceH2 ⊂H3, therefore
we shall call the type III orbits hyperbolic. The corresponding stationary subgroup is
generated by vectorsXh1, Y

h
1 . The type IV orbits are represented by a unique orbit, which

contains the pointφ1 = −φ6 = 1, φ2 = φ3 = φ4 = φ5 = 0. In this casec1 = c2 = 0.
The corresponding stationary subgroup is generated by vectorsXh1 + Yh3 , Xh3 − Yh1 . Vectors
Xh1, Y

h
2 , Y

h
3 generate the Lie algebra so(1, 2) ⊂ so(1, 3), and the vectorXh1+Yh3 corresponds

to parabolic transformations of spaceH2 ⊂H3. We shall call this orbit parabolic.
All previously mentioned orbits are four-dimensional. Besides, there is only a trivial

orbit, consisting only of the point 0∈ so∗(1, 3).

Appendix B

The investigation of the momentum map’s rank.
We shall consider the momentum map, corresponding to a system of two particles on

the spaceS3. Since the group SO(4) acts by diffeomorphisms onM, and also on so∗(4),
the rank of the momentum map is constant on each orbit and can be calculated on a point
with coordinatesx1 = y1 = z1 = y2 = z2 = pz2 = 0, x2 6= 0, since such point is contained
on any orbit of the groups SO(4) on the spaceM. Let the coordinates onM are ordered as
: x1, y1, z1, x2, y2, z2, px1, py1, pz1, px2, py2, pz2. Then the Jacobi matrix of the momentum
map has the following block form:(

A B 0 C

0 D F Q

)
(25)

where

A =
( 0 pz1 −py1

−pz1 0 px1

py1 −px1 0

)
B =

( 0 0 −py2

0 0 px2

py2 −px2 0

)
(26)

C =
( 0 0 0

0 0 −x2

0 x2 0

)
D = x2

(
px2 py2 0
−py2 px2 0

0 0 px2

)
(27)

F =
 1

2 0 0
0 1

2 0
0 0 1

2

 Q = 1
2

( 1+ x2
2 0 0

0 1− x2
2 0

0 0 1− x2
2

)
. (28)

By using a block column

(
0
F

)
the Jacobi matrix can be transformed, not changing its

rank, to the matrix(
A B 0 C

0 0 F 0

)
(29)

the rank of which is greater by three than the rank of the matrix(ABC). Sincex2 6= 0, the
last rank is 3 under the conditionp2

y1
+p2

z1
+p2

y2
6= 0 and 2 in the opposite case. The value

of the momentum map in the given point is

8 = (0, 0, x2py2,
1
2px1 + 1

2(1+ x2
2)px2,

1
2py1 + 1

2(1− x2
2)py2,

1
2pz1) (30)
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and values of invariants of the co-adjoint action of the group SO(4) are:

F s1 = 1
4(px1 + (1+ x2

2)px2)
2+ 1

4(py1 + (1− x2
2)py2)

2+ ( 1
2pz1 + x2py2)

2 (31)

F s2 = 1
4(px1 + (1+ x2

2)px2)
2+ 1

4(py1 + (1− x2
2)py2)

2+ ( 1
2pz1 − x2py2)

2. (32)

If py1 = pz1 = py2 = 0, thenF s1 = F s2 . If F s1 = F s2 , thenx2pz1py2 = 0, and eitherpz1 = 0,
or py2 = 0. In the first case both particles always remain on the sphereS2 ⊂ S3, given
by the equationz = 0, and in the second case—on the sphereS2 ⊂ S3, containing the
geodesic(0x) and the geodesic, generated by a vector of a velocity of the first particle. If,
in addition, a rank of momentum map is less than 6 (in this case it is equal to 5), in the
above chosen point we have:py1 = pz1 = py2 = pz2 = 0 and the motion of two particles
takes place on the geodesic(0x).

Reasoning similarly for the spaceH3, we obtain the following.

Proposition 1. A value of the momentum map for a system of two particles on the space
S3 (on the spaceH3) is irregular in points, which correspond to particles moving on
the sphereS2 ⊂ S3 (on the spaceH2 ⊂ H3) and are characterized by the condition
F s1 = F s2 (F h2 = 0). The rank of the momentum map is not maximal in those points
of the phase space, which correspond to the motion of particles on a common geodesic.

The following statement can be similarly proved.

Proposition 2. A non-zero value of the momentum map for a system of two particles on
spacesS2 or H2 is regular. The zero value of the momentum map corresponds to the
one-dimensional motion of two particles on a common geodesic with the total zero impulse.
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